New Product Announcement 7234 Single-phase, 2U, Industrial Amplifier/Battery Simulator

Benchtop powerhouse

The 7234 is a benchtop powerhouse. With its exclusive DC max topology it is able to deliver an amazing 28 amps of continuous DC power into the EUT—almost double what was previously possible. The DC max technology also increases the 7234’s ability to sync current by an impressive 50%. When coupled with AE Techron’s 3110A standards waveform generator, it creates a compact, very competent conducted immunity test system.

Benchtop-powerhouse1-1.

Value proposition

The 7234 is configurable, multi-mode and scalable. A key to the 7234’s value proposition is its configurability. The 7234 has a slew rate in excess of 100 volts per microsecond, making it the fastest battery simulator available. It is able to accurately produce dropouts and surges, with rise and fall times as short as 1.2 microseconds, meeting present test requirements with capacity left for customer-requested over-testing or future more stringent standards.

Battery simulator to amplifier

With the flip of a couple of switches, the 7234 is able to go from being a low-voltage, high-current battery simulator to a wide bandwidth DC blocked amplifier, ideal for driving coupling transformers in aviation standards like DO160, Section 18 and 19, or automotive standards like ISO11452-10.

Fast slew rate

One problem inherent in wide-bandwidth coupling transformers, like those used in EMC test standards, is the reduced output for a given input voltage at higher frequencies. This reduced output requires the amplifier to produce greater voltages to achieve the desired voltage out of the coupling transformer. The fast slew rate of the 7234 allows it to produce higher voltages at higher frequencies than other similar products.

Driving loads

Circuit topology of the 7234 was initially developed for, and is used to this day, to drive very inductive loads, like MRI gradient coils in some pretty interesting locations. This designed-in ability to drive highly inductive loads, coupled with a voltage potential of up to 150 volts peak, make it an ideal amplifier for driving loads like radiating loops or Helmholtz coils that are highly inductive.

Portability

The 7234 is small, rugged and efficient. At less than 50 pounds in weight and 2U in height, the amplifier is small enough and light enough to be easily moved from one test location to another. There are times when the object to be measured is too large to be moved. The 7234 is mechanically rugged enough to use in the field if needed. Even if the physical environment in your lab is less hostile than those encountered outdoors, it is very likely that the loads that need to be driven are not. Because of this AE Techron has made the 7234 just as tough electrically. AE Techron has combined a robust design with comprehensive, conservatively set protections and finished with resettable circuits and breakers instead of fuses. This makes missed connections, output shorts and system ground loops, events that could mean an extended stay at the repair shop for lesser products, a simple turn off the power, fix the issue and start again for the AE Techron.

Compelling warranty

For the small chance that the 7234 might be damaged, AE Techron has a three-year, no-fault warranty and a 30-day repair turnaround guarantee. The hidden cost of ownership of other products at this power level is a requirement for three-phase power. The 7234 is efficient enough that it can be powered from a standard single-phase wall outlet, avoiding the expense of running special power to the test location.

Another area where the 7234 can save a great deal of money is in its scalability. When there is that one test that requires just a little bit more than is available from a single 7234, instead of purchasing a new larger system, simply flip a switch, connect a second 7234 in parallel and resume testing.

In summary

More DC power.
Faster slew rate.
More voltage potential.
Ability to source and sink.
Compact, efficient, rugged.
Field configurable.
Scalable.
3-year no-fault warranty.

The 7234 represents an unbeatable value.

Form Factor Acquires High Precision Devices, Inc.

HPD

In October 2020 Form Factor completed the acquisition of Boulder, Colorado-based High Precision Devices, Inc. (HPD), a respected supplier of scientific instruments, especially precision cryogenic instruments. The transaction makes HPD part of FormFactor, bolstering FormFactor’s capabilities, capacity, portfolio of products—and potential. Exciting times for FormFactor as the HPD approach is to work with top-flight researchers, engineers and scientific organizations to provide practical solutions from concept to fruition. HPD is imaginative, connected and knows how to deliver.

Form Factor completed

The key to any corporate acquisition is whether or not the product lines, services and cultures of the two companies are a good match. FormFactor’s acquisition of HPD is a great fit as HPD’s impressive range of precision cryogenic instruments, including chip-scale cryogenic probe systems and cryostats capable of extremely low temperatures, beautifully complement Form Factor’s existing line of cryogenic wafer probe systems and cryogenic engineering probes, expanding its market reach with cryostats for die and package testing and lower-temperature wafer probe capabilities.

Small, rectangular ADR cryostat

Small, rectangular ADR cryostat

HPD cryostats provide an alternative to more expensive and space consuming dilution refrigerators (DR). These Adiabatic Demagnetization Refrigerators (ADR) are great for applications that do not need the full power of a DR, but still require sub-Kelvin temperatures. HPD’s ADRs provide a faster, compact, and less costly path to temperatures a fraction of a degree above absolute zero. And the new Continuous ADRs (CADR) allow the cold to be maintained.

Leveraging the strength and scale of HPD and FormFactor together, a broad portfolio of ultra-low temperature test technologies can now be offered to enable scientific and industrial customers to tackle important societal challenges, solutions to which will benefit people  around the world for generations to come. One such need that HPD/FormFactor are staring down is solving the data center energy crisis, solutions to which will contribute to the mitigation of climate change. Another need is realizing the astonishing possibilities of quantum computing, which is now being oriented toward real-world use in pharmaceutical, data security and other applications. Quantum computing, along with superconducting computing, are now experiencing tremendous growth and will likely have profound impacts on various emerging technologies and, ultimately, in our everyday lives. HPD’s technical team brings highly specialized skills and know-how to address the unique test challenges for these emerging technologies.

HPD cryostat

Cryogenic circuitry could revolutionize computing

Long before these technologies mentioned above become reality, years of development is required for many of the essential components. Conceptualization, prototyping, and refinement of these superconducting devices can only be performed at cryogenic temperatures. HPD 4 K cryogenic probe stations and millikelvin Adiabatic Demagnetization Refrigerator (ADR)  research cryostats serve a vital role in many of these endeavors. As a result, through its acquisition of HPD, FormFactor has positioned itself to be an important player in the development of a host of forward-looking technologies that will improve quality of life in the decades ahead.

WEBINAR : Unattended RF Measurement and Calibration for 5G Device Characterization and More

Unattended RF Measurement

June 3, 2021 (US/EU) | 9:00am PDT/ 6:00pm CEST

June 3 and 4, 2021 (US/ASIA) | 5:00pm PDT/ 9:00am China

Unattended RF MeasurementNew generations of 5G devices can have dozens of RF channels operating at high frequency, creating a need for a greater on wafer test volume. In engineering, more device tests are needed to support the expanded speed bands, increasing the workload to complete testing. How can test engineers manage the load? What if the probers could operate unattended — start a test and measure during a whole shift, overnight, or even over the weekend? There is a real, hands-free solution that provides fast, accurate measurements with high throughput — leading to more accurate design models and faster time to market.

Learn how an autonomous wafer probe system with integrated components from Keysight and FormFactor can:

  •  Automatically perform wafer and die soaks to get the probes quickly to consistent operating temperature
  • Quickly and automatically clean probes and then calibrate at mmw frequencies without user input
  • Adjust automatically to multiple probe-to-probe spacings for different device geometries in a single test run
  • Monitor calibration drift and recalibrate on the fly when necessary
  • Work seamlessly for full temperature range -60 to 175C operation using N5291A Solution, from Keysight technologies, providing single sweep operation of 900 Hz to 130 GHz, and beyond this using Virginia diodes Waveguide mini modules and waveguide probes

LEARN MORE

Unattended RF Measurement

WEBINAR : Delivering Advanced mm-Wave Load-Pull Measurements

Delivering Advanced mm-Wave

May 25, 2021 (US/EU) | 9:00am PDT/ 6:00pm CEST

 May 25 and 26, 2021 (US/ASIA) | 5:00pm PDT/ 9:00am China

Delivering Advanced mm-WaveThe ramp-up of 5G mm-Wave technologies comes with substantial enhancements in connectivity, promising to revolutionize our world. A fundamental requirement of 5G devices is to maximize performance by optimizing the power and/or effciency of the amplifiers and transistors. This is done by measuring the performance characteristics of the device at different impedances that are systematically changed using load-pull tuners.

FormFactor has partnered with Focus Microwaves and Keysight Technologies to deliver a fully integrated probe solution for accurate on-wafer mm-Wave load-pull measurements, delivering a number of benefits along the way, including:

• Low-Loss Measurement Channel for Maximized Tuning Range
• Accurate Probing of Small Pads for High Resolution with aPerfect Fit
• Coaxial Calibration with the Highest Phase Stability
• EMI and light-tight testing at a wide temperature range, including tests down to -40°C without a build-up of frost and condensation.

Join our webinar to learn more about our best-in-class tuning range performance with minimized insertion loss.

LEARN MORE
Delivering Advanced mm-Wave02